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TATTIONAL ADVISORY COMMITTEE FOR ATRONAUTICS
ADVATICE RESTRICTED REPORT

THE TWO-?IMENSIONAL INCOMPRESSIBLE POTENTIAT, FLOW
OVER CORRUGATED AND DISTORTED INFINITE SURFACES

By W. Perl and L. J. Green

SUMMARY

The two-dimensional incompresgible potential flow over corru-~
gations and bumps of arbitrary shape is derived by conformal trans-
formation. The results are compared with those obtained by the
methods of thin-airfoil theory. Some discussion is included of the
flow over bumps that protrude both inwvard anid ouvtward from a wall.

INTRODUCTION

Analyses of the effects of local surface digtortions on the drag
and the critical speed of airfoils usuvally begin with a consideration
of the two-dimensional incompressible potential flow over a surface
having these distortions. In reference 1, Tor example, the well-
known approximate methods of thin-airfoil theory are applied to the
calculation of the velocity distribution over periodic corrugations
and igolated bumps of sinusoidal shape.

In this paper the ideal flow past such shapes is derived by more
exact conformal mapping methods of W. Perl of the NACA staff, particu~
larly inasmuch as the numerical application of these methods is almost
as simple as that of the approximate methods of thin-airfoil theory.
The results are compared with those obtained by thin-airfoil theory.
Some incidental discussion of the conditions at a cusped edge and
of the mapping of bumps that extend both inward and outward from a
wall is also given.

The analysis in this paper was begun at Langley Memorial Aero-

navtical Laboratory and coupleted at the Aircraft Engine Research
Laboratory of the NACA at Cleveland, Ohio.
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THE FLOW OVER A CORRUGATED SURFACE

Consider a corrugated surface, all the cross sections of which
parallel to a fixed plane are the same, having infinite length and
arbitrary but perindic shape. It is desired to find the vslocity
distribution produced along the surface by an ideal incompressitle
fluid moving parallel to this plane. The free-stream velocity suf-
ficiently far from the corrugation is assumed to be constant, par-
allel tn the axis of periodicity of the cross section, and of
magnitude unity.

The problem is solved by finding the conformal transformaticn
between points of the corrugation (actually the cross section),
taken as periodic about the 6-axis of a z-plane, and points of a
straight line, taken as the -axis of a {-plane (fig. 1). The
Cartesian mapping function (CMF), which relates conformally corre-
sponding pairs of points in the two planes, is defined as the vector
difference z - { Detween such pairs of points.

z

Thus
¥+ 16 | 1
(=¥ + i (1)
z-2Q-1ie=(V-VY) -1(4-6) J

The various quantities are defined in figure 1.

The COMF z - { can Pe regarded as & function that is regular
everywvhere outside a circle ty virtue of the transformations

z = log p! (2a)
{ =1og p (2v)
in vhich the coordinates of p!' and p are

V+i6
eY

p = P“;'O+i¢

Fquation (2a) transforms the semi-infinite periodic strip in the
z-plane, tounded by 9 = 0, 9 = 2z, and the corrugation W(€),

- into the entire region outside the p'-plane near circle that corre-

sponds to the corrugation. The corrugation given by the Cartesian
coordinates W and €@ in the z-plane is represented in the p'-plane
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by the near circle with polar coordinates
eouation (2b) transforms the

b;‘f ¢)=O’ ¢=23‘{,

and the @-axis
region outside a unit circle in the p-plane.

(Y = 0),

|
e¥ and 6. Similarly,
semi~infinite periodic sirip, bounded

into the entire
The CMFF 2 - § “becones

g function that is regular everywhere outgide the p-plane unit
circle and is therefcre erxpressible by an inverse power series

z - { =

o5

log (p'/p) =

1

\
Cn
n
+P

(3)

vherein the constant term, representing a relative translation
between the z-plane and Lne Q -plane, has been made zero, The itrans-

formation log (p'/p)

C

n = an + lbn,

-€(g) =

Tae mapping fu:o.vt“-_on Y(g) - 1€(¢\
can be obtsined from equations (4

in equation (o) has been used
On the bovndaries equabion (3) becomes, with p = et

oo

1

(=

1

~

= Zen cos nf + Ebn sin nﬁi

'>

Z‘b cos nf - L_’a sin nQH

%n reference 2,
and

for a glven boundary IU(G)
(‘onversely, special families

of corrugations are obtained by selecblng various harmonics in equa-
tions (4); for example, a simple type of corrugation is given by

T
ug) = - 2L
() = - %

o(p)

]

cos §

sin @

p— ep) =p+% sinp

~

(5)

vhere T/2 is the thickness ratio of the corrugation, defined as
(fig. 1) divided by the wave lern“th 2%s the
guantity T dis thus anslogous to the thickness ratio

(maximm thickness/chord) of airfoil sections.
family (egquations (5)) corresponding to T = 0, 0.1, 0.2, and 0.3

the total heignt h

are plotted in figure 2 as ?ﬁ%—é against 9.

The members of this
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Once the mapping function of a corrugation is known, the veloc~
ity v at any point on the surface is given by the product of the
velocity on the straight-line boundary, which is unity, and the
stretching factor [dﬁ/dzl from the straight line to the corruga-
tion; thus, by use of equations (1),

lafl a1
B dzl‘ ld\!f+ ido |
id
v = l (6)

¥ * %,

For the special family of corrugations given by eguations (5)
the velocity distribution reduces to

I . 2 2
Al de (ayy
/& - 3)

AV - v-1 _ '_2__ r 1 - _l (7)
®T/2 = wi/2 T wT | 5

/;l + C§2\ + 5? cos 8 !

/ z/) ]

—

Figure 3 shows the velocity distributions of members of thoe special
family shown in figure 2. As T-— 0, V and Av also— 0, but

. Av

- — — = imiti it
bhoth ﬂ@7§ and 5575— cos 6, These limiting values agree with

the thin-airfoil results obtained by Allen (reference 1).

In the general case of a given arbitrary corrugation V(6),

the CMF V(%) — ie(f) can be determined by successive approxima-
tions. Suppose, for example, that the zeroth approximation to the
corrugation W(6) is the straight line ¢b(¢) - ieo(ﬁ) = 0, The
first-approximation ordinates ¢1(¢), corresponding to a set of
evenly spaced ¢ values, are then obtained from the given boundary
at the abscissas 6p = $#. The function €1 (), conjugate to
wi(ﬁ), is determined by harmonic analysis and synthesis in accord-
ance with equations (4). The resuvlting first-approximation

OMF Vy(f) —ieg(P) yields the coordimates Wy (P), 61(f) = P —-&(P)
of a bourndary, vhich is compared with the given boundary. If the
agreement is not satisfactorily close, the procedure is repeated;

e second-approximation ordinates ﬁ%(ﬁ) corresponding to the same
set of evenly spaced @ values, are obtained from the given boundary
at the abscissas 6,(f) =§ — ¢ (#), etec.
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As an example of the general procedure and for comparison with
the resulus of Allen (reference 1) in the case of nonnegligible thick-
ness, a cos%pe corrugation with a thickness ratio of 0.2 was taken
as Vv =— 5 Co8 0. The zeroth approximstion was chosen ag the
special corrugation T = 0.2 cf figure 2, The maximum difference
in ordinates of the two surfaces was 30 percent. After the first
apprcximavion the maximum difference hetween the ordinates of the
given cosine corrugavicn and the first-approximation boundary was
reduced o about 4 percent., A second and a third approximation
Turther reduced the difference to 1 and 0.25 percents, respectively.
The resulting CMF and the velocity distribution for the third
approximation are given in table 1. Figure 4 shows this velocity
distribution as well as the approximate velocity distribution based
on thin-airfoil theory. As was demonstrated by Allen, the approxi-
mate velocity distribvution is a cosine distribution.

The results obtained by the two methods for a thickness ratio
of 20 percent differ appreciably; the maximwm difference is about
16 percent of the maximvm increment of velocity over the free-stream
value. In the range of thickness ratios contemplated by Allen, how-
ever, the resuvlis of thin-airfoil theory are undoubtedly of sufficient
accuracy, as far as incompressible potential flow is concerned.

THE FLOW OVER A BUMP

Congider a surface that is perfectly flat except for an isolated
bump or a disturbance of constant chord length and infinite span;
assvme the flow over the surface to be at right angles to the span
and of magnitude unity sufficiently far from the bump. A two-
dimensional symmetrical flow is obtained by reflecting the bump in
the plane surface. Thig problem is solved by conformally mapping
the symmetrical section, taken in the z-plane, into its axis of
symnetry, taken in the {-plane. The coordinates in the two planes
are (fig. 5)

-
z =x + iy |
gEf+inj

The CMF 2z - § tecomes a function regular in the exterior of a
circle |p] =R as a result of the Joukowski btransformation

(8)
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and can be expressed as an inverse power series

z-¢ =4 Z
0

For corresponding points on the boundaries in the z~, {-, and

(9)

bl

p-planes,
co a. o) 'b 9
Ax (D) =§;‘ ;?1 cos nf + %IJ —; sin np
g (10)
cCc oo
<P 8y
by(B) = 0 — cos nf - z 74 °in nd
o ) J

z(B) = r cos @ + ax(g) (r = 2R)

The velocity v at any point of the symmetrical section is the
preduct of the velocity at the corresponding point of the circle
|B] =R and the stretching factor |dp/dz|. The result is

v - sin 25 (11)

e 8- 25 + (43)

The sections under consideration are now assumed to be symmetrical
with respect to both the coordinate axzes and to have a horizontal
tangent at their chordwise extremities on the x~-axis, The Fourier
geries (equations (10)) are thereby simplified; symmetry with
regpect to the x-axis requires that by =0 ,, and symetry with
regpect to the y-axis regquires the vanishing of even harmonics,
Hence,

bx =Z n 009 nf 1 ‘ (122)
* (n odd)

0 in o J (12b)

e m e e e e e e e — e D e e N e s - memme—— %~ s am o e o
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The condition that the section have a horizontal tangent at the
chordwise extremities, that is,

o
>.nap cos nf

1

4y _

dx (2]

r sin § + > nap sin np
1

be zero for P = 0, is satisfied if

co ow
Snap =0, r+o,02 ay £0 (13)
1 1

A simple example of a family of bumps satisfying conditions (13)

is given by
Ax:—% (oos;é——oosSyﬁ) l

(14)
Ay = 2 T (Fln @ — z sin 3¢} J
z = (1 - %)oos i +% cos 3P (15)

where the value of r has been so adjusted that the chordwise
extremities of the section are at x = %1, The thickness ratio T
is defined as twice the height of the bump divided by its length 2,
The bumps given by equations (14) and (15) are shown in figure 6(a)
for T =0, 0.1, 0.2, and 0,3. The family of symmetrical sections
shovn in this figure was derived by Kaplan in reference 3 by a
generalization of the Joukowski transformation. The corresponding
velocity distributions are shown in figure 6(b).

The velocity distribution on the wall (that is, for |x| >1,

= 0) can be obtained from the general expression for the velocity
at any point in the plane outside the section; thus, for an arbi-
trary airfoil situated at an angle of attack « in a free stream
of wnit velocity, the expression for the derivative wy; of the poten-
tial function in the airfoil z-plane is

T’Tp
dz/ap

Wz-':'-




san I =

where wp 1is the derivative of the potential function in the circle p-plane. If p. is
vritten in the form

-

P=e\y+i¢

v
R:eo F
Q=V-Yq

o~

evaluation of Wp and dz/dp yields the following formuwlas for the magnitude vy and the
direction II of the velocity vector in the airfoil plane:

-1l

Wz=vZe

sinh® cos2 (B + o) + E:osh Qsin (f + «) + sin (o + BT)]Z

VZ =
2
(cosh Q2 sin § ~ g; + <s:th Qcos @ + agg
/

@mhﬁ cosp + 8¢> cosh 2 sin(p+a) +sm(orr+|3T;J ~3inh Qcos (P+x) éosh&') ging — 8;25

—{sinhQ cos(f+a) (sinhQ cos @+ aﬂ% /coshﬁ" sinf ~ ag;; LcoshQ gin(f+a)+sin (MBT)]}

where Bp 1is the zero-lift angle.

For a symmetrical flow and section, « = By = O; whereas, for points on the wall,
B = dx/3p = 0. Equation (17) thus reduces to

%
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(va)yann = — (19)
: ol
sich Q + (28
\I'a)’ls ¢=o

The value of %%%) for arbitrary 230 is obtained by differen-
B =O

tiating equation (12t), replacing R with ew, and using for ap
the valuves previcugly determined for the section.

The conformal transformation of a sinusoidal bump was next
deteruined by the method of guccessive approximations outlined in
the precedirng section, The thickness ratio T was taken to be
0.2, so that the symetrical section has the equation

¥y =201 (1 + cos x x) (-lzX<l) (20)

The gymmetrical sectinn of figure 6(a) with T = 0.2 was chosen as
the zeroth approximation. Two approximations were carried out, The
maxiwvm differences tetween the ordinates of the given boundary
(equation (20)) and the successively derived boundaries were about
5, 1.5, and 0,25 percent for the zeroth, the {irst, and the second
approximations, respectively. Table 2 contains the data for the
second approximation and figure 7 shows the velocity distribution
over bump and wall. The approximate result of Allen, obtained on
the hagis of thin-airfoil theory, is also shown in figure 7. The
raximvm difference between the two curves is about 8 percent of the
waximom increment of velocity over the free-stream valwe, This
difference, it should te remembsred, is for a Z0-percent thickness
ratio; for the very small thickness ratios considered by Allen,
thin-airfoil thenry ig quite adeguate,

Figures 6 znd 7 show that the velocity distribution in the
neighborhood of the point where bump meets wall merits discussion.
A gymmetrical sectinsn can become tangent to the wall in any one of
three ways: with infinite curvature, zero curvature, and finite
nonzero curvature, The case of infinite curvature, properly called
a ousp, holds for the gpecial family of sections given by equa-
tions (14) and (15) arnd also for the trailing edge of a symmetrical
Jdnoukowski airfoil, The velocity curve corresponding ©o both bump
and wall has a minimum value at the cusp; the velccity gradient at
the cusp is finite on the bump side and infinite on the wall side
a8 indicated in figure 6(). See reference 4 for a comparison with
experiment.

Zero curvature is obtained at the sharp edge of the symmetrical

gection 1f, in addition to conditions (13), the following equatiin
holds:
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The velocity curve in this cass hag a minimmm at scme point on the
bump and the velocity gradient is continuous at the point vhere the
gecsion meets tze wall.

The section ovntained by reflecting the cogine bump in the wall
has finite nonzero curvature at its gharp edge. The velocity is a
minimwi at a point on the bump, as seen in figure 7, but the conti~
nuity of the velocﬁty gradient atv the sharp edge is, from the cal~
culations of this paper, still an open question, It is conjectured
that, at a sharp edge of this tipe, the velocity gradient has &
finite digcontinuity.

EXTERTOR~INTERTOR BUMPS

The flow ovexr & bump has been derived in the preceding section
by refiection of the bvmp coantour in the vall and analysis of thke
regulting symuetrical section., If an exterior-inverior buap, nzmely,
a digtortion of part of & wall in both dirsechHions perpendicular to
the wall, is reflected in the wall, a zymmetricsl figure-eight sec-
sion results, as indicated in figure 8. The wapping of such a con-
tour onto a circle can bhe accompiisiied as p:cviously degcribed,

It appears, hovever, that the derivatlve ﬂz/dp of the trangforma-~
tion will be zero at a point outside the circle corresponding to a
point within ths loop consigiing of tile interior part of the bmp
contcur and ite reflection. Thas svch a zero must exist hecomes

evidens vpon tracing the paths around the figure-eight contour

co*“esnonﬁ*ng to concentric circles larger than the basgic circle,
As irdicated schemgtically in figuvre 3, the transition contour
between thoge of figvre-eighc t;pe and those simply comnected haz a
shaxp-zdged extremity at the point F inside the loop formed by the
interior part of the bup contowsr and its reflection. AL this
gharp edge, dz/ép = C. AL"Huug; tliis property of a looped contour
mignt be useful, for ezample, in locating the singularitics of a
mapping fenctl on, tais method of attack does not yield the desgired
flow over the exterior~interior bump {(the flow actually obtained is
that whose zero struamllne is the pata ABCDEFGE in fiz. 8). It may
be noted that the conventional application of thin~airfolil theory
also breaks dowm in tai case.

The flow over an extorior-interior bump can be obiained by
mepping the bump and thic wall contours onto an infinitely long
straight line. Points on the bump conbtour are related to pointg on
the straight line by the CifF,

e i e b i i it bk e s oo e e meee
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z - [ = Ax + 1Ay

a3 indicated in figure 9, and points on the straight line are related
to points on the unit circle Ty the bilinear tramsformation, which
for the problem under consideration is taken as

g:ip‘?) (21)

Equation (21) transforms the upper half {-plane into the region
exterior to the unit circle; corresponding points of both regions
are shown in figure S, For points on the boundaries, the inverse-
power-series expression for z - ¢ (equations (9) and (21)) yields

(e o -
Ax = >'ap cog nf + > bp sin nf |

(@)
(@)

o [ec]
Ay = >, by cos np - S ap ein nff \
0

x =f + Ax = tan 29352—2 + Ax(P)

y =4y

The velocity distribution at the surface of the bump is obtained
from the complex velocity function wg:

v - Ve o 1 1
27 az  az i (z - C)/dp . AAx
g e Sagm - eeemn (gl

The absolute magnitude of the velocity v 1is therefore given by

1

»\/ [1 - (1 + sin §) dﬂz . [(1 + sin §) %‘;ﬂz

As a sgimple example of an exterior-interior bump, the family
represented by
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AX = b sin §
Ay =y =b cos @

o
= tan-gg——:—é +b gin

2

]
i

{te

s illuastrated for various values of b, <togevher with the corre-
sponding velocity distribublons, in figuvres 10 and 1l. By the
nechods previously described and also by superposition of solutions
by linear combinations of CMF's, arbitrary distorbtions of a straight
wall may be analiyzed or gynthesgized.

2

CONCLUSTION

The velocity distribvutions on corrugations and bumpse as deter-
mined by conformal transformation are, in the case of 20-percent
thickness ratio, appreciably different from the corrssponding results
by thin-airfoil theory. The maximum differences, expressed as frac-
tions of the maximum incremeni of vslociity over free~gtream velocity
produvced by the disturbance, amount vo apprroximately 15 percent for
a8 sinucoidal corrugation of 2C-percent itnickness ratio and 8 percent
for a sinusoidal bump of the same thickness ratio. In the limit of
zere tnickness ratio, the resulis by conformal transfermation are
identical with the results by thinwairfeil theory.

Aircralt Engine Researck Laboratory,
Fational Advisory Cormittee for Seronautics,
Cleveland, Ohio,
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TABIE 1. — CMF AND VELCCITY DISTRIBUTION FCR COSIWE CORRUGATION

v
(thin-
airfoil
theory,
refer—-
ence 1)

(radians) v c 0 ay de -

ag af

0 1-0.312 10 0 0 -0.h}11210,6939 | 0.6858

/12 | ~.29251-,1118} .3736] .1607| -.3996] 7098 | .7075
w/6 | =,2343|-.2038] .727h] .2729] -.2971| .75hL | .765k
a/lt | =e1551{=.265911.0613] 3228 -.17756] 8191 | .8LhO
/%3 | -.069%1-.2968111.2h52] .z272] -.0718] .892L | .9298

5 w/12 | .01 |-.305h {1,610k (3068] .0128] .9673 | 1.0137
w/? <090k |-.2930]{1.8638] .2747] .0789{1.0L404 | 1.0907

7 w/12 | ,157%1-.2652{2.0978! .238)| .131511.1113 | 1.1580
2 /3 .213%-,225%{2,3197} ,1918] .1716{1.1760 | 1.213%
3 a/M | .2573(-.1762|2.532%| .ihh7| .201%i1.2320 | 1.2576
5 /6 | .2839{-.1208|2.7387] .0566] .220711.2736| 1.2890
11 #/12 .3079i-.061312,9411} .OhB2] .2320{1.2996 | 1.3079
v ! .zelo 3.1h16! 0 .235311,3077 | 1.3142

National Advisory Committiee
for hAeronautics
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TABIE 2. - CMF ARD VELOCITY DISTRIBUTION FOR COSINE BUMP

(]

( rad%.lans )R ERY) Ax Ay x 'gg'}'{‘ g‘g’z v
/2 |0 0 0.2000 | 0, 0.306k {0 1.390L
Lw/9 |o -.0523 { ,1910 1} .137% | .2866 | .1021 |1.3522
7 /18 |0 -,0978 | 1651 | .2756 | .2282 | .1907 |1.2509
/3 |0 -.1299 | 1262 | L159 | .13h7 | 24386 |1.1149
5 w/18 |0 - 1h36 | 081} .5581 | .0217 | .2538 | .9801
2n/9 |0 -.1386 | 04131 6977 |-.0718 | .196% | .8793
/6 0 -.10%3 | 019 | .8he2 |-.105h | L1063 | .8272
/9 | o -.105% | ,00%1| .9207 |-.0815 | .0350 | .8183%
/18 | o -.09h9 | 0002 | .9803 {-.0%73 | .OOLhh | .8%5hL
/36 |0 -.0925 { ,0000 | .99%1 {-.0173 | .0006 | .8L61
0 051 =.0915 10 1,0016 {0 .0093 | .88L7
0 010 | =.0908 ;O 1,008, {0 0178 | .8598
0 220 | -.088% {0 1.025% 10 L0318 | .8735
0 301 —=.08h46 {0 1.0566 {0 Oh1l6 | 8889
0 A0l -.0801 {0 1,1001 {0 LOon76 | .90h0
0 o501 =.0752 {0 1.1559 {0 .0508 | .9180
0 60} -.0700 |0 1,222 {0 L0518 1 9306
0 70} =069 {0 1.3055 {0 L0513 | L9haT
0 801 -.0598 {0 1.1003 {0 LOL97 | L9512
0 90| -,0550 {0 1.5096 10 LOh7h | 959
0 1,00} -,0503 |0 1.6343% {0 LOLh8 | 9663

National Advisory Committee
for Aeronautics
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Fig. 2
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